Cancer/testis antigen PIWIL2 suppresses circadian rhythms by regulating the stability and activity of BMAL1 and CLOCK

نویسندگان

  • Yilu Lu
  • Xulei Zheng
  • Wei Hu
  • Shasha Bian
  • Zhiwei Zhang
  • Dachang Tao
  • Yunqiang Liu
  • Yongxin Ma
چکیده

Circadian rhythms are regulated by transcriptional and post-translational feedback loops generated by appropriate functions of clock proteins. Rhythmic degradation of the circadian clock proteins is critical for maintenance of the circadian oscillations. Notably, circadian clock does not work during spermatogenesis and can be disrupted in tumors. However, the underlying mechanism that suppresses circadian rhythms in germ cells and cancer cells remains largely unknown. Here we report that the cancer/testis antigen PIWIL2 can repress circadian rhythms both in the testis and cancer cells. By facilitating SRC binding with PI3K, PIWIL2 activates the PI3K-AKT pathway to phosphorylate and deactivate GSK3β, suppressing GSK3β-induced phosphorylation and degradation of circadian protein BMAL1 and CLOCK. Meanwhile, PIWIL2 can bind with E-Box sequences associated with the BMAL1/CLOCK complex to negatively regulate the transcriptional activation activity of promoters of clock-controlled genes. Taken together, our results first described a function for the germline-specific protein PIWIL2 in regulation of the circadian clock, providing a molecular link between spermatogenesis as well as tumorigenesis to the dysfunction of circadian rhythms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Lycium barbarum. polysaccharide on type 2 diabetes mellitus rats by regulating biological rhythms

Objective(s): Type 2 diabetes mellitus (T2DM) is associated with circadian disruption. Our previous experimental results have showed that dietary Lycium barbarum. polysaccharide (LBP-4a) exhibited hypoglycemic and improving insulin resistance (IR) activities. This study was to explore the mechanisms of LBP-4a for improving hyperglycemia and IR by regulating biological rhythms in T2DM rats. Mat...

متن کامل

Distinct Roles of HDAC3 in the Core Circadian Negative Feedback Loop Are Critical for Clock Function.

In the core mammalian circadian negative feedback loop, the BMAL1-CLOCK complex activates the transcription of the genes Period (Per) and Cryptochrome (Cry). To close the negative feedback loop, the PER-CRY complex interacts with the BMAL1-CLOCK complex to repress its activity. These two processes are separated temporally to ensure clock function. Here, we show that histone deacetylase 3 (HDAC3...

متن کامل

Regulation of BMAL1 Protein Stability and Circadian Function by GSK3β-Mediated Phosphorylation

BACKGROUND Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3b...

متن کامل

Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway

Bmal1 is a core factor in the regulation of circadian rhythms. Previous studies have shown that Bmal1 suppresses tumor growth in cell culture and animal models and is downregulated in certain types of cancer. The aim of the present study was to investigated whether Bmal1 influences the invasiveness of cancer cells. We demonstrated that knockdown of Bmal1 by RNA interference promoted cancer cell...

متن کامل

Role of miR-142-3p in the Post-Transcriptional Regulation of the Clock Gene Bmal1 in the Mouse SCN

MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional modulators by regulating stability or translation of target mRNAs. Recent studies have implicated miRNAs in the regulation of mammalian circadian rhythms. To explore the role of miRNAs in the post-transcriptional modulation of core clock genes in the master circadian pacemaker, we examined miR-142-3p for evidence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017